

РЕШЕНИЯ АО «ГТ ЭНЕРГО» В СФЕРЕ ЭНЕРГЕТИКИ

2023

ПРОБЛЕМАТИКА СФЕРЫ ЭНЕРГЕТИКИ РФ

- Санкционные ограничения технологическая и финансовая блокада.
- Разрыв технологических цепочек производства и поставок компонентной базы для энергетического машиностроения.
- Дефицит отечественных решений и разработок для энергетического сектора.
- Появление отечественных энергетических газовых турбин только после 2027 года.
- Сдвиг сроков вправо по действующим контрактам на поставку комплектующих для паросилового цикла (программаДПМ2).
- Наличие проблемных точек в сфере теплофикации с высоким износом оборудования, которое требует замещения.
- Энергетике РФ необходимы полностью локализованные и надежные по всей компонентной базе технологические решения в комбинированном цикле производства электрической и тепловой энергии.

ЕСТЬ РЕШЕНИЕ **АО «ГТ ЭНЕРГО»**

Энергоблок на базе ГТ-009М АО «ГТ Энерго» это технически надежное, масштабируемое, экономически эффективное решение, отвечающее технологической изоляции России локализация

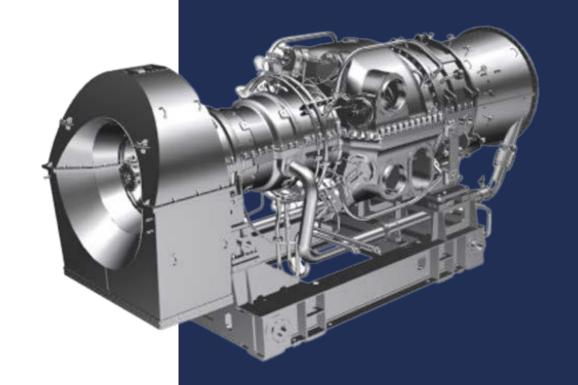
производство всей компонентной базы на мощностях российских производителей

Энергетическая стационарная Газотурбинная установка

ГТ-009М (МЭ) АО «ГТ Энерго» с рекуперативным воздухоподогревателем и системой автоматического управления

- Полностью отечественная разработка для энергетического сектора РФ
- Номинальная электрическая мощность 9 МВт.
- Возможность производства всей компонентной базы на мощностях российских производителей – локализация 100%
- Вся конструкторская и проектная документация принадлежит АО «ГТ Энерго»
- Высокая надёжность и эффективность (наработка с 2003 года)
- Локальная ремонтопригодность и высокий ресурс (150 тыс. часов)
- Большой опыт эксплуатации на территории РФ (44 энергоблока)

СТАЦИОНАРНАЯ ЭНЕРГЕТИЧЕСКАЯ ГАЗОВАЯ **ТУРБИНА ГТ-009М (МЭ)**


Отечественное надежное решение с 100% показателем степени локализации производства на территории РФ. Вся компонентная база может быть обеспечена отечественным машиностроением

• Успешно применено с 2003 года (44 энергоблока в эксплуатации, общая наработка более 1,7 млн часов). Вся проектная и конструкторская документация принадлежит АО «ГТ Энерго»

• Строительство новых или замещение изношенных неэффективных котельных, ТЭЦ, расположенных в муниципальных образованиях и производственных площадках с тепловыми отборам

• Весь ремонт и сервис проводятся непосредственно на объекте, обслуживание ведется на мощностях региональных сервисных центров АО «ГТ Энерго» (г. Чехов, г. Екатеринбург, г. Волгодонск)

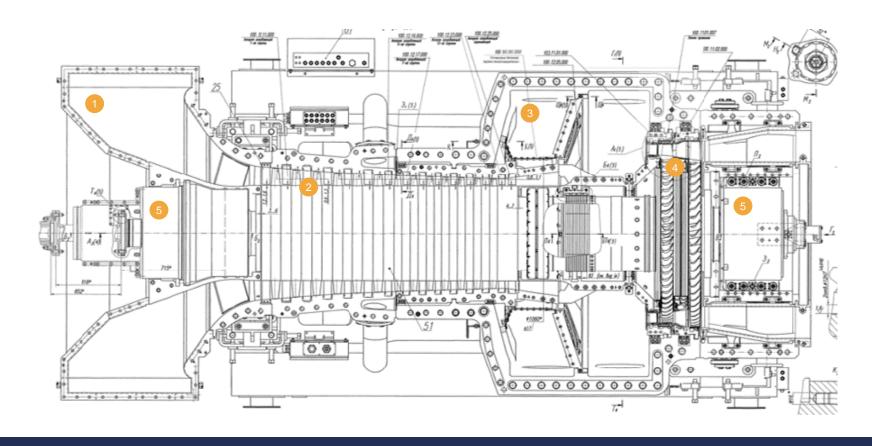
• На сторонних мощностях по лицензии АО «ГТ Энерго»


ОСНОВНЫЕ ПАРАМЕТРЫ **ГТ-009М (МЭ)**

Наименование показателя	Значение	
Мощность номинальная/максимальная	9,0/10,5 MBT	
Расход воздуха на входе	50,0 кг/с	
Степень повышения давления в компрессоре	6,8	
Температура газа на входе в турбину	950°C	
Температура газа на выходе из турбины	560°C	
Частота вращения ротора	59726215об/мин	
кпд	32%	
Тип топлива	Природный газ	
Давление газоснабжения	1,2 МПа	
Расход топлива (в рекуперативном режиме)	3116 нм3/ч	
Удельный расход условного топлива на выработку электроэнергии	290 г/кВт*ч	
Удельный расход условного топлива на выработку теплоэнергии	136кг/Гкал	

Газовая турбина ГТ-009М одновальный двигатель выполненный по регенеративному циклу, с утилизацией тепла уходящих газов для подогрева циклового воздуха из-за компрессора с его последующей подачей в камеру сгорания.

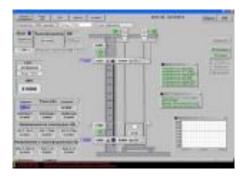
Номинальный режим работы ГТ-009М при эксплуатации его в диапазоне температур наружного воздуха от минус 45 до плюс 40°С имеет ограничение по температуре газа в горле соплового аппарата турбины.

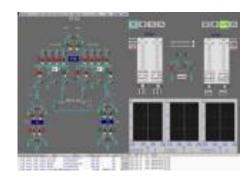


КОНСТРУКЦИЯ ГТ-009М (МЭ)

КОНСТРУКЦИЯ ГТ-009М (МЭ)

Конструктивная схема двигателя ГТ-009М:


- 1. входное устройство;
- 2. тринадцатиступенчатый осевой компрессор
- 3. камера сгорания
- 4. двухступенчатая осевая турбина


5. магнитные подшипники, радиальный №1 и упорный в опоре компрессора, радиальный №2 в опоре турбины

СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ГТ-009М (САУ)

Собственная разработка АО «ГТ Энерго». Отвечает требованию государственной безопасности и критических требований по импортзамещению, обеспечивает управление, регулирование и поддержание режимов работы газовой турбины с учётом эксплуатационных ограничений, а также реализует функции сигнализации предельных режимов и аварийных отключений

- пуск газотурбинной станции из различных тепловых состояний;
- работа газотурбинной станции при постоянной и переменной нагрузках с автоматическим поддержанием заданных значений технологических параметров и электрической мощности в регулируемом диапазоне;
- режимы автоматической нагрузки или разгрузки энергоблока по заранее заданному графику или темпу;
- циклограмму авто<mark>матического</mark> планового останова <mark>газотурбинной станции;</mark>
- автоматически<mark>й</mark> ав<mark>ар</mark>ийный останов оборудования при отклонении от допустимых параметров.

СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ГТ-009М (САУ)

Fastwel CPU686E

Находящиеся в эксплуатации САУ ГТ реализованы на контроллере Fastwel CPU686E

REGUL500

Собственные компетенции, квалифицированное владение математическим и программным инструментарием позволяет оперативно изменять логику работы ПО собственными силам.

На данный момент ведется разработка программного обеспечения пилотной САУ ГТ на новом контроллере линейки REGUL500 (Россия)

ПОТЕНЦИАЛЬНЫЕ **ИЗГОТОВИТЕЛИ** КОМПОНЕНТОВ ГТ-009М (МЭ)

Наименование детали	Возможный изготовитель
Горелочные устройства	"Киров Энергомаш" "РЭП Холдинг" ПАО "Пролетарский Завод" г. Санкт Петербург
Патрубки пламя переброса	АО "Металлист-Самара" г. Самара ПАО "ОДК-Сатурн" г. Рыбинск "Киров Энергомаш" "РЭП Холдинг" ПАО "Пролетарский Завод" г. Санкт Петербург
Пламенная труба	АО "Металлист-Самара" г. Самара ПАО "ОДК-Сатурн" г. Рыбинск АО КМПО г. Казань АО "Кадви" г. Калуга ООО "ВКВ" г. Волгодонск ООО "Маштехнология" г. Санкт-Петербург "Киров Энергомаш" "РЭП Холдинг" ПАО "Пролетарский Завод" г. Санкт Петербург
Переходной патрубок	"Киров Энергомаш" "РЭП Холдинг" ПАО "Пролетарский Завод" г. Санкт Петербург ООО "Маштехнология" г. Санкт-Петербург

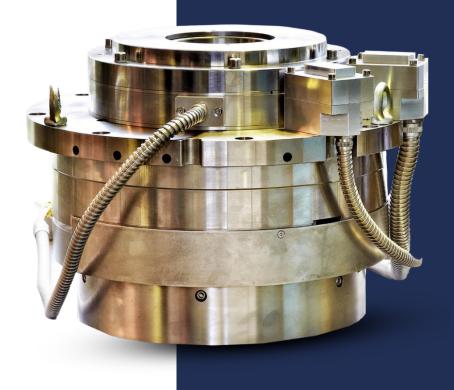
Наименование детали	Возможный изготовитель	
Рабочие лопатки 1ст	АО "КМПО" г. Казань ООО "Пумори-Энергия" г. Екатеринбург ПК "Салют" АО "ОДК" "Силовые машины"	
Рабочие лопатки 2ст	АО КМПО г. КазаньООО ПП ТСС "ТурбинаСпецСервис" г.Уфа ПК "Салют" АО "ОДК" "Силовые машины"	
Диафрагма 1 ступени турбины	"Киров Энергомаш" "РЭП Холдинг"	
Диафрагма 2 ступени турбины		
Проставки	"Киров Энергомаш" "РЭП Холдинг" "Пролетарский Завод" "Кингисеппский машиностроительный завод" "Апгрейд" г. Сергиев Посад "Энтехмаш" г. Санкт-Петербург "ТурбинаСпецСервис" г.Уфа "Дизельспецсервис" г. Санкт-Петербург	
Ротор компрессора	Поковка: "Ижорские заводы" Механическая обработка: "Киров Энергомаш" "РЭП Холдинг" "Пролетарский завод" "Силовые машины" "КМПО" г. Казань	
Диски турбины	"Калужский турбинный завод" "Уральский турбинный завод"	
Корпус газовой турбины Выходной диффузор турбины	"Силовые машины" "Киров Энергомаш" "Пролетарский завод" "Калужский турбинный завод" "Уральский турбинный завод"	
Рабочие лопатки компрессора Направляющие лопатки компрессора	"Киров Энергомаш" "РЭП Холдинг" "Пролетарский завод" "Силовые машины" "КМПО" г. Казань	

ИННОВАЦИОННЫЕ РАЗРАБОТКИ АО «ГТ ЭНЕРГО» В СФЕРЕ ЭНЕРГЕТИКИ

- Система управления магнитных подшипников
- Тиристорный преобразователь частоты

СИСТЕМА УПРАВЛЕНИЯ МАГНИТНЫХ ПОДШИПНИКОВ (СУМП)

Предназначена для обеспечения магнитного подвеса газотурбинной установки в период нормальной эксплуатации без механического контакта вращающихся и неподвижных частей агрегата. Вращение роторов турбогруппы, будучи подвешенными в магнитном поле, осуществляется в состоянии левитации.

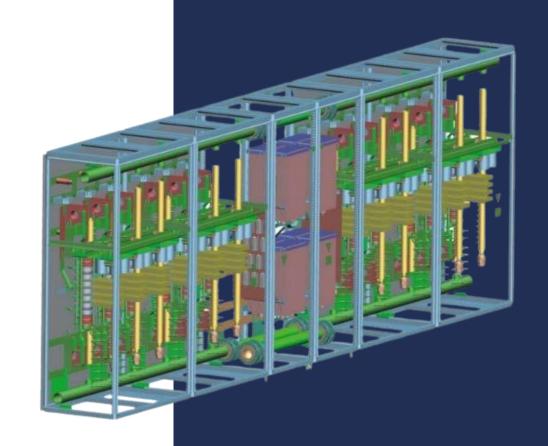

• Успешно применено с 2003 года (44 энергоблока в эксплуатации, общая наработка более 1,7 млн часов). Вся проектная и конструкторская документация принадлежит АО «ГТ Энерго»

• Газотурбинные установки (ГТУ), газоперекачивающие установки (ГПА)

• По завершение НИОКР масштабирование по лицензии АО «ГТ Энерго»

Преимущества магнитного подвеса:

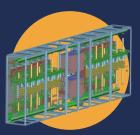
- Отсутствие контакта (нет трения = нет износа)
- Не требуют смазки, не выделяют загрязнений
- Очень низкий уровень вибрации
- Малое потребление электроэнергии
- Встроенная система контроля и мониторинга состояния


ТИРИСТОРНЫЙ **ПРЕОБРАЗОВАТЕЛЬ** ЧАСТОТЫ (ТПЧ)


Связующее звено генерирующего оборудования с энергосистемой для объектов производства электрической энергии.

• Успешно применено с 2003 года (44 энергоблока в эксплуатации, общая наработка более 1,7 млн часов). Вся проектная и конструкторская документация принадлежит АО «ГТ Энерго»

• Газотурбинные электростанции и ВИЭ (солнечные и ветровые генераторы).


• На сторонних мощностях по лицензии АО «ГТ Энерго».

ОСНОВНЫЕ ПАРАМЕТРЫ ТИРИСТОРНОГО ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ (ТПЧ)

Наименование показателя	Значение
Номинальная выходная полная мощность	12500 кВа
Номинальное напряжение входное, линейное	(3×2)×3,0 кВ
Номинальное напряжение выходное	(3×2)×2,9 кВ
Номинальная частота входного/выходного напряжения	101,6/50 Гц
Входной ток, номинальный	1227 A
Выходной ток, номинальный	1555 A
Допустимый диапазон изменения частоты входного напряжения	±5 %
КПД, не ниже (при номинальной нагрузке cos φ=0,8)	98%

Обеспечивает качество выдаваемой в сеть электроэнергии (отсутствие колебаний и искажений), плавную синхронизацию с энергосистемой и ограничивает токи КЗ генерации.

ПОРТРЕТ КОМПАНИИ АО «ГТ ЭНЕРГО»

- Компетенции в энергетике
- Ключевые цифры
- География объектов

AO «ГТ ЭНЕРГО»

Генерирующая компания, осуществляющая полный комплекс услуг по строительству и управлению газотурбинными станциями с последующей продажей тепловой и электрической энергии

КОМПЕТЕНЦИИВ **ЭНЕРГЕТИКЕ**

- 19 лет успешной работы в распределенной генерации
- Собственные проектные и строительно-монтажные мощности
- Собственные отечественные разработки: (газотурбинный энергоблок, тиристорный преобразователь частоты (ТПЧ), система автоматического управления (САУ)

ПРОИЗВОДСТВО И СБЫТ ЭЛЕКТРИЧЕСКОЙ И ТЕПЛОВОЙ ЭНЕРГИИ

- Управление 18 современными электростанциями (ГТ ТЭЦ)
- Успешно применяемая бизнес модель (продажа электроэнергии на опте/рознице, сбыт тепла локальным потребителям)
- Техническое обслуживание, ремонт и сервисГТ ТЭЦ собственными силами
- Три региональных сервисных и диспетчерских центра (Чехов, Екатеринбург, Волгодонск)
- Постоянное обучение и повышение квалификации персонала

ГЕОГРАФИЯ ОБЪЕКТОВ АО «ГТ ЭНЕРГО»

18

9

действующих ГТ ТЭЦ

строящихся объектов

Компания производит тепловую и электрическую энергию, а также, обеспечивает теплоснабжение потребителей в 15 регионах страны

Станция 1-го поколения

ГТ ТЭЦ Вельская 009 2 энергоблока Станция 2-го поколения

ГТ ТЭЦ Щелковская 009 М 2 энергоблока Станция 3-го поколения

> ГТ ТЭЦ Ревдинская 009 МЭ 4 энергоблока

РЕШЕНИЯ ИННОВАЦИИ ПОРТРЕТ КОМПАНИИ

1

396_{MBT}

Установленная электрическая мощность

1120 гкал/ч

Установленная тепловая мощность

3

ЭВОЛЮЦИЯ РЕШЕНИЙ АО «ГТ ЭНЕРГО»

Станции 1-го поколениясентябрь 2003 – октябрь 2008

Станции 2-го поколениямарт 2008 – апрель 2012

Станции 3-го поколениядекабрь 2016

Введены в эксплуатацию девять ГТ ТЭЦ 009 мощностью 18-36 МВт 40-80 Гкал/ч

- Повышенный ресурс силового агрегата (150 000 ч.);
- Межремонтный период 50 000 ч. (весь ремонт на объекте);
- Основное технологическое оборудование – собственная разработка.

Введены в эксплуатацию восемь ГТ ТЭЦ 009 М мошностью 18 МВт 80 Гкал/ч

- Использование магнитного подшипника. Нет необходимости в системе пожаротушения (нет масла);
- Внедрение тиристорного преобразователя частоты для обеспечения устойчивой работы ГТ ТЭЦ параллельно с сетью.

Ввод в эксплуатацию ГТ ТЭЦ 009 МЭ Ревдинская 36 МВт 100 Гкал/ч

- Тэтраидная структура здания. Простота и компактность конструктивной схемы;
- Минимальный состав зданий и сооружений, минимум обслуживающего персонала.

ОБЪЕКТЫ АО «ГТ ЭНЕРГО»

44

1.7

14.2 FBT*4 **7.5** млн Гкал

энергоблока в эксплуатации суммарная наработка энергоблоков

произведено электроэнергии произведено тепловой энергии

ОБЪЕКТЫ АО «ГТ ЭНЕРГО»

Nº	Наименование ГТ ТЭС	Регион	Год ввода в эксплуатацию	Тип	Установленная мощность Электрическая энергия МВТ	Установленная мощность Тепловая энергия Гкал/час
1	Вельская	Архангельская обл.	2003	009	18	40
2	Мичуринская	Белгородская обл.	2004	009	24,2 (перемаркировка)	80
3	Орловская	Орловская обл.	2005	009	18	40
4	Режевская	Свердловская обл.	2005	009	18	40
5	Всеволожская	Ленинградская обл.	2006	009	18	40
6	Барнаульская	Алтайский край	2006	009	36	80
7	Крымская	Краснодарский край	2008	009	18	40
8	Саранская	Мордовия	2008	009	18	40
9	Лужская	Новгородская обл.	2008	009	24,5 (перемаркировка)	80
10	Тамбовская	Тамбовская обл.	2008	009M	18	80
11	Екатеринбургская	Свердловская обл.	2008	009M	18	80
12	Элистинская	Республика Калмыкия	2009	009M	18	80
13	Магнитогорская	Челябинская обл.	2010	009M	18	80
14	Сасовская	Рязанская обл.	2010	009M	18	80
15	Новочеркасская	Ростовская обл.	2011	009M	18	80
16	Щелковская	Московская обл.	2011	009M	18	80
17	Касимовская	Рязанская обл.	2012	009M	18	80
18	Ревдинская	Свердловская обл.	2016	6Me00	24 (перемаркировка)	100

АО «ГТ Энерго»: г. Москва, Краснопресненская набережная, 12 Центр международной торговли, подъезд 6, офис 547

Тел.: + 7 (495) 204 27 33

E-mail: info@gtenergo.ru

www.gtenergo.ru

